Matching 2D Image Segments with Genetic Algorithms and Approximation Spaces
نویسندگان
چکیده
1 This article introduces an approach to matching 2D image segments using approximation spaces. The rough set approach introduced by Zdzis law Pawlak provides a ground for concluding to what degree a particular set of similar image segments is a part of a set of image segments representing a norm or standard. The number of features (color difference and overlap between segments) typically used to solve the image segment matching problem is small. This means that there is not enough information to permit image segment matching with high accuracy. By contrast, many more features can be used in solving the image segment matching problem using a combination of evolutionary and rough set methods. Several different uses of a Darwinian form of a genetic algorithm (GA) are introduced as a means to partition large collections of image segments into blocks of similar image segments. After filtering, the output of a GA provides a basis for finding matching segments in the context of an approximation space. A coverage form of approximation space is presented in this article. Such an approximation space makes it possible to measure the the extent that a set of image segments representing a standard covers GA-produced blocks. The contribution of this article is the introduction of an approach to matching image segments in the context of an approximation space.
منابع مشابه
Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملMeasurement of Left Ventricular Myocardium Wall Instantaneous Motions with Echocardiographic Sequence Images
Background & Aims: One of the important aims of quantitative cardiac image processing is the clarification of myocardial motions in order to derive biomechanical behavior of the heart in the disease condition. In this study we presented a computerized analysis method for detecting the instantaneous myocardial changes by using 2D echocardiography images. Methods: The analysis was performed on th...
متن کاملA New Structural Matching Method Based on Linear Features for High Resolution Satellite Images
Along with commercial accessibility of high resolution satellite images in recent decades, the issue of extracting accurate 3D spatial information in many fields became the centre of attention and applications related to photogrammetry and remote sensing has increased. To extract such information, the images should be geo-referenced. The procedure of georeferencing is done in four main steps...
متن کاملSparse Super-Resolution with Space Matching Pursuits
Super-resolution image zooming is possible when the image has some geometric regularity. Directional interpolation algorithms are used in industry, with ad-hoc regularity measurements. Sparse signal decompositions in dictionaries of curvelets or bandlets find indirectly the directions of regularity by optimizing the sparsity. However, super-resolution interpolations in such dictionaries do not ...
متن کامل